Time and Place	TBA			
Professor	Marcello Lucia Office 1S-224, marcello.lucia@csi.cuny.edu			
Textbook	Required: Elementary diffe	METRY, by Andrew Pressley.		
			SURFACES, by Manfredo P. do Carmo. RVES AND SURFACES, by Alfred Gray.	
Course Outline	This course is an introduction to differential geometry, an important subject of modern mathematics. It will primarily be focused on the study of curves and surfaces in three dimensional spaces. We will see how the notion of derivative introduced in multi-variable calculus can naturally be extended to differentiate functions defined on curves and sur- faces. This generalization combined with elements of linear algebra allow to introduce several notions that allow to measure how much a curve or surface is bent in the Eu- clidean space. One goal of this course is to find invariants for curves and surfaces, giving criteria to see if two surfaces can be deformed one into the other. We will go across very nice and interesting theorems, for example the Theorema Egregium which explains why there cannot be an accurate planar map of the world.			
	More concretely we plan to cover the following topics:			
	1. Curves in \mathbb{R}^3 : arclength, curvature, torsion, Fundamental Theorem of space curves.			
	 Surfaces in R³: regular and parametrized surfaces, first fundamental form, Gamap, second fundamental form, principal curvatures, Gaussian curvature, m curvature. 			
	3. Intrinsic Geometry of Surface: (local) isometries, vector fields, covariant derivative, Theorema Egregium, Fundamental Theorems for surfaces, geodesics.			
	4. Gauss-Bonnet Theorem: geodesic curvature, local Gauss-Bonnet Theorem, topol- ogy and triangulations of surfaces, global Gauss-Bonnet Theorem.			
Prerequisites	Students need to be comfortable with vector calculus and linear algebra. Official prerequisites for the course are: (Mth 233 and Mth 330) or (Mth 233, Mth 334 and Mth 338).			
Course Grade	The final course grade is determined as follows:			
	Н	lidterms		

Exams

Final 40%

Lesson Plans

Detailed lesson plans are as follows:

Lesson	Sections	Topics	
1	1.1, 1.2, 1.3	Parametrized curves, arc-length	
2	1.4, 1.5	Local theory of curves	
3	1.6, 1.7	Global theory of curves	
4	2.1, 2.2	Regular surfaces	
5, 6	2.3	Functions on parametrized surfaces	
7	2.4	Differential of a map	
8	2.5	First fundamental form	
9	2.6	Surface area, orientation	
10	none	Review	
11	none	Exam One	
12, 13	3.1, 3.2	Gauss map and its properties	
14	3.3	Gauss map in local coordinates	
15	3.4	Vector fields	
16	3.5	Minimal surfaces	
17	4.1, 4.2	Conformal maps and Isometries	
18	4.3	Gauss theorem, review	
19	none	Exam Two	
20	4.4	Parallel transport and geodesics	
21	4.5	Gauss-Bonnet theorem	
22	4.6	Exponential map	
23	5.1, 5.2	The rigidity of the sphere	
24	5.3	Theorem of Hopf-Rinow	
25	5.4	Variations of the arc length	
26	5.5	Jacobi fields and conjugate points	
27	5.6	Covering space and the Hadamard theorem	
28	none	Review	