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Chapter 1

Background

1.1 Stochastic Differential Equations

What is a Stochastic Differential Equation? A stochastic differential equation (SDE)

is a differential equation in which one or more of the terms are represented by a

stochastic process, resulting in a solution which is also a stochastic process. SDEs are

used to model various phenomena such as randomly varying stock prices or physical

systems subject to thermal fluctuations. In general, a stochastic differential equation

can be written in the form

dX = µ(t,X(t)dt+ σ(t,X(t))dWt (1.1)

Usually, our goal is to find a stochastic process of X(t) satisfying the above equation.

The coefficients µ and σ are functions that can depend on the time t and the stochastic

process X itself. dWt is the Brownian increment and we will discuss its role later in

detail. For now, one might think of this increment as the term that adds the random

fluctuations to the system. Finding a solution to (1.1) is often a complicated task,

1



CHAPTER 1. BACKGROUND 2

involving not only analytical, but often numerical techniques as well. When moving

from deterministic to stochastic differential equations, it is helpful to introduce the

concept of stochastic differential equation with an simple example, for instance a

population growth model. Let x = x(t) ≡ xt denote the population at time t, and

assume a constant (proportional) population growth rate, so that the change in the

population at t is given by the deterministic differential equation:

dxt = Kxtdt , x(0) = x0 , (1.2)

where K is some positive constant. Now suppose that due to some inherent random-

ness we can no longer assume that the intial condition x0 to be determinstic constant.

Then we may assume x0 to be random variable X0(ω) and to model the population

growth by the differential equation:

dXt(ω) = KXt(ω)dt, x(0) = X0(ω) (1.3)

The solution to this equation is Xt(ω) = X0(ω)eKt . Note that Xt(ω) is a random

variable, and in this case its randomness comes from the initial condition X0(ω).

Now suppose that even K is not known for certain, but that our knowledge of K is

perturbed by some randomness, which we will model as the increment of a stochastic

process so that

dXt(ω) = (Kdt+ dWt(ω))Xt(ω), x(0) = X0(ω) (1.4)

The equation above is an example of stochastic differential equation, more generally

a SDE is written as

dXt(ω) = ft(Xt(ω))dt+ σt(Xt(ω))dWt(ω) (1.5)
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where the function f corresponding to the determinstic part of the SDE is called the

drift (the subscript t indicates that it may depend on the time t). The function σt

is called the diffusion coefficient. dWt(ω) is generally referred to underlying diffusion

process which is in our case Brownian motion (also called Wiener process) denoted

by W (t) and we will give a short introduction to Brownian motion in the following

section.

1.2 Brownian Motion

Standard Brownian Motion:

Definition: A Wiener process W (t) is a stochastic process with the following proper-

ties:

1. W (0) = 0,

2. Wt ∼ N(0, t),

3. Wt −Ws ∼ N(0, t− s)

Here, the symbol N(µ, σ2) denotes a Gaussian distribution with mean µ and variance

σ2. Brownian motion can be constructed as a limit of random walks.

Using the three properties listed above, one can show that, for each t > 0 the

random variable defined by W (t) = W (t) −W (0) is the increment in time interval

[0, t]: This time increment is normally distributed with zero mean, variance t and a

time-dependent density

f(t, x) =
1√
2πt

e
−x2
2t (1.6)
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Brownian Motion with constant drift:

Definition: A Brownian Motion with a constant drift µ is the stochastic process X(t)

which is the solution of an SDE (with diffusion coefficient σ) given by

dX(t) = µdt+ σdW (t)

with initial value X(0) = x0. By direct integration one can see that

X(t) = xo + µt+ σW (t) (1.7)

and hence X(t) is normally distributed, with mean x0 + µt and variance σ2t. Its

density function is then given by

f(t, x) =
1

σ
√

2πt
e−(x−x0−µt)

2/(2σ2t) (1.8)

1.3 Ito’s Lemma

A main tool for manipulating (and sometimes even solving) stochastic differential

equations is Ito’s Lemma. Remember that, for a function f(x, y), the differential df

is defined by an expansion which is correct to first order by

df =
∂f

∂x
dx+

∂f

∂y
dy . (1.9)

However, what if we have a function f which depends not only on a real variable

t, but also on a stochastic process such as Brownian motion we need to take higher

order terms into account as well. Suppose that f is given by f = f(t,Wt), where Wt
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denotes Brownian motion so we can write for the first-order expansion

df =
∂f

∂t
dt+

∂f

∂Wt

dWt . (1.10)

If we expand df using Taylor’s formula including higher-order terms, we obtain di-

rectly:

df =
∂f

∂t
dt+

∂f

∂Wt

dWt +
1

2

∂2f

∂t2
(dt)2 +

∂2f

∂t∂Wt

dtdWt +
1

2

∂2f

∂(Wt)2
(dWt)

2 +R (1.11)

where the remainder R collects the higher-order terms. We discard all terms involving

dt to a power higher than 1. Note that the term dtdWt has magnitude (dt)
3
2 . this

leaves the following expression for df :

df =
∂f

∂t
dt+

∂f

∂Wt

dWt +
1

2

∂2f

∂W 2
t

(dWt)
2 (1.12)

We next use the fact that (dWt)
2 = dt and write

df =

(
∂f

∂t
+

1

2

∂2f

∂W 2
t

)
dt+

∂f

∂Wt

dWt . (1.13)

This equation is called Ito’s Lemma, and gives us the correct expression for caluclating

differentials of composite function which depend on Brownian processes.

1.4 Examples of the application of Ito’s Lemma

.

We can consider Ito’s Lemma as a generalization of the determinstic chain rule. In

the following we discuss several examples and applications of Ito’s Lemma. Consider

the special case where Xt = Wt and Yt = f(Wt) then we have µt = 0 and σt = 1 and
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so

dYt = f ′(Wt)dWt +
1

2
f ′′(Wt)dt

Another example is the application to f(x) = ex. Then, if we calculate the first and

second derivative, we get f(x) = f ′(x) = f ′′(x). Let’s assume constant volatility

σt = σ and constant drift µt = µ and define

Yt = f(Xt) = eXt = eσWt+µt (1.14)

This process is called exponential Brownian motion, and, by applying Ito’s Lemma,

we find that

dYt = f ′(Xt)dXt +
1

2
σ2f ′′(Xt)dt

= Yt

(
σdWt +

(
µ+

1

2
σ2

)
dt

)
.

In particular we see that for µ = −σ
2
, hence for

Yt = Y0 eσWt−σ
2t
2

we have dYt = σYtdWt. This example is of relevance in the context of the Black-

Scholes model which we discuss briefly below.

1.5 The Black-Scholes model

The Black Scholes model is used to price European options (which assumes that they

must be held to expiration) and related custom derivatives. It takes into account that

you have the option of investing in an asset earning the risk-free interest rate. The

model acknowledges that the option price is purely a function of the volatility of the
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stock’s price (the higher the volatility the higher the premium on the option).

The Black Scholes Model: The price of a European option is given by

C = SN(d1)−Ke−rtN(d2) (1.15)

where

d1 =
ln S

K
+ (r + σ2

2
)t

σ
√
t

, d2 =
ln S

K
+ (r − σ2

2
)t

σ
√
t

(1.16)

Here C is the theoretical call value, S the current stock price, N stands for the

cumulative standard normal probability distribution. Moreover, the maturity is given

by t until expiration, K is the option strike price and r the risk free interest rate.

σ = is the stock volatility. Most commonly, all the coefficients are given in the unit

of years, sometimes people use days as the unit for time.

An example: Consider an option which has 20 days to expiration. The strike price is

105 and the price of stock is 100 and the stock has an daily volatility of 0.02. Assume

an interest rate of 0.01. Then, we find

d1 =
ln100

105
+
(
.01
365

+ .022

2

)
20

.02
√

20
= −.49464

and, by similar calculation or use the following formula d2 = d1 − σ
√
t we find that

d2 = −0.49464−
(
−0.02

√
20
)

= −0.58409

Therefore, as a result for the price of the European call option, we obtain

C = 100N (−0.49464)− 105e−0.01(
20
365)N (−0.58409) = 1.70
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Below we show a MATLAB code to solve the Black Scholes Model:

function [vCall, Vput , d1 ,d2, Nd1, Nd2]= bs[ K, S0, sig, r,T]

d1 =(log(S0/K)+(r+sig^2/2)*T)/(sig*sqrt(T));

d2 =(log(S0/K)+(r-sig^2/2)*T)/(sig*sqrt(T));

Nd1 = my_normcdf(d1);

Nd2 = my_normcdf(d2);

vCall = S0*Nd1 - K*exp(-r*T)*Nd2;

vPut = my_normcdf(-d2)*K*exp(-r*T)-my_normcdf(-d1)*S0;

end

function y = my_normcdf(x)

y = 0.5*erfc(-x/sqrt(2))$;

end
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1.6 Examples involving Brownian motion,

Ito’s Lemma and Black Scholes

We conclude this introductory section by giving two more examples in the context of

stochastic differential equations and their analytical description:

1. Example: Find dXt where Xt = X0e
σtWt

Solution: We consider Yt = X0e
X where X = σtWt. The stochastic product

rule yields now dX = σtdWt + σWtdt where σt = σt and µt = σWt. Now

we consider f(x) = X0 ex so f ′(x) = X0e
x and f ′′(x) = X0e

x. With these

preparations, we are ready to apply Ito’s Lemma and we get

dXt = (σt)(X0e
x)dWt + (σWt)

2(X0e
x)dt+

1

2
(σt)2(X0e

x)dt

Substituting back the original expression for Xt we obtain

dXt = Xt

(
σtdWt +

(
σ2W 2

t +
σ2t2

2

)
dt

)

2. Consider the stochastic differential equation given by

dXt = σdWt + µdt , X0 = a > 0

where σ and µ are constants.

(a) Write down the solution Xt of the SDE.

Solution:

Xt = σWt + µt+ a

(b) Find mean and expectation value of Xt
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Solution:

E(Xt) = a+ µt, V(Xt) = σ2t

(c) Write down the probability density distribution function p(x, t) of Xt

Solution:

p(x, t) =
1√

2πσ2t
e

−(x−a−µt)2

(2σ2t)



Chapter 2

Monte-Carlo Simulations

2.1 The basic idea of a Monte-Carlo simulation

One of the most common ways to estimate risk is the use of a Monte Carlo Simulation

(MCS). For example, to calculate the value at risk of portfolio, we can run a Monte

Carlo simulation that attempts to predict the worst likely loss for a portfolio given

a confidence interval over a specified time horizon (which is the length of time over

which an investment is made or held before it is liquidated). In this chapter, we

will review a basic example of a Monte-Carlo simulation applied to a stock price.

In order to do so, we need a model to specify the behavior of the stock price, and

we could use one of the most common models in finance, which is the previously

mentioned exponential Brownian motion commonly used in the Black-Scholes option

pricing models. While MCS can refer to a universe of different approaches, we will

start with the most basic one: a Monte-Carlo simulation for Brownian motion.

One of the most interesting features of a Monte Carlo simulation is the fact that

one can attempt to predict the future many times over. At the end of the simulation,

thousands or even millions of random trials produce a distribution of outcomes that

11
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can be analyzed with a variety of statistical tools.

2.2 A Monte-Carlo simulation for

Brownian motion

In order to show how to generate random trials for a simple Monte-Carlo simulation,

we present a code to that can be used to simulate Brownian motion:

function [t,W] = brownianMotion(nSteps,mpath)

t = zeros(1,nSteps+1);

W = zeros(mpath, nSteps+1);

tEnd = 2;

dt = tEnd/nSteps

W(1)=0;

t(1)=0;

for j=1:nSteps

t(j+1) = t(j) +dt;

W(:,j+1)= W(:,j) + t(j+1) *(sqrt(dt)*randn(mpath,1))

end

end
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The purpose of this program is to create different realizations of the basic stochas-

tic process Xt = Wt satisfying the stochastic differential equation given by

dXt = dWt, X0 = 0 (2.1)

which is simple, drift-free Brownian motion. By calling the above function from the

command window we can decide on the number of paths we would like to use for our

simulation, for example

[t,W] = brownianMotion(100,100);

plot(t,W)

The above command will plot a total of 100 different realizations of the random paths

for the case of Brownian motion and the number of realizations can be increased by

changing the argument when calling the function. Figure 2.1 shows an example of

the simulation result for 100 and for 1000 sample paths. By applying Monte Carlo

by taking the end points of the random trials and we can create histogram and

compare this to the theoretical probability distribution of Brownian motion. The

simulation produced a distribution of hypothetical future outcomes. We keep in mind

that Brownian Motion model assumes normality: the random numbers are normally

distributed with expected return mean and standard deviation. In fact with more

trials, the agreement of the probability distribution obtained by the Monte-Carlo

simulation and to the theoretical distribution is expected to improve. For comparison,

we use the following MATLAB codes:

[t,W]=brownianMotion(10000,10000);

dx=0.2;

ps=hist(W(:,end),x);

ps= ps/sum(ps)*1/dx;

plot(x,ps,x,1/sqrt(4*pi)*exp(-x.^2/4))
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Figure 2.1: An example plot of 100 sample paths of simple Brownian motion (left)
and 1000 sample paths (right) generated using a Monte-Carlo simulations.
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Here, we made use of the fact that we simulate in the Monte-Carlo simulation up to a

time t = 2. At this point in time, the analytical prediction for the probability density

can be obtained from the fact that Wt ∼ N(0, t), hence we find

p(x, t = 2) =
1√
4π

e−x.
2/4 (2.2)

which we can use to compare to the histogram generated by the paths. Figure 2.2

shows the comparison for 100 and 1000 paths. Clearly, the agreement improves with

larger n if n counts the number of sample paths.

Finally, a Monte Carlo Simulation applies a selected model to a large set of random

trials in an attempt to produce a reasonable set of possible future outcomes.
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Figure 2.2: Comparison of the analytical probability density and the histogram ob-
tained from the Monte-Carlo simulation paths.



Chapter 3

Application: Randomly Advected

Triangles

3.1 Geometry of Lagrangian triangles

In the following we discuss an application of stochastic processes to understand the

random advection of triangles. This work is based on the paper ”Mechanisms driving

shape distortion in two-dimensional flow” [2]:

In order to illustrate the physical processes governing the development of material

areas in complex flow, we study the shape dynamics of three points Lagrangian clus-

ters in an experimental quasi two dimensional flow. By comparing our measurements

with simulations of triangles evolving purely diffusely, we show that the path taken

by the mean triangle shape through a suitably defined phase space is indicative of

the underlying flow dynamics.

In order to describe the shapes and sizes of Lagrangian triangles, we label their

side lengths as A1, A2, A3 with A1 ≥ A2 ≥ A3 and their internal angles as θ1, θ2, θ3

with θ1 ≥ θ2 ≥ θ3. We characterize the size of a triangle with radius of gyration,

17
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given by R2
g = 1

3
(A2

1 + A2
2 + A2

3) and wee are interested in the triangle shape. The

shape has two degrees of freedoms, and so we require two independent parameters

to characterize it. One common choice is to define the vectors ρ1 ≡ (r2−r1)√
2

and

ρ2 ≡ (2r3−r2−r1)√
6

where rn is the position of the n-th triangle vertex. with these vectors,

the parameters χ ≡ (1
2
) arctan[2ρ1ρ̇2/(ρ

2
2− ρ21)] and ω ≡ 2|ρ1× ρ2|/(ρ21 + ρ22) can then

be defined to characterize the triangle shapes . Although χ and ω are independent

quantities that are only functions of the triangle shape, they do not have a clear

geometric interpretations . We therefore instead describe the triangle shape using

set of parameters ,where the largest angle is θ, and ω to be the ratio of the smallest

side to the intermediate side which gives a measure of the closeness of the nearest

two vertices. we define θ ∈ [π
3
, π] and ω ∈ [0, 1], we plot the joint probability density

function of θ and ω.

3.2 Finding θ and ω using

Monte-Carlo simulations

We can use the Monte-Carlo simulations in order to explore the probability density

for the two random variables θ and ω. As a first step, we draw the edges of the

random triangles using uniformly distributed random numbers. In MATLAB, this

can be obtained using the function call

R = rand(6,n)

which produces a matrix with n columns(corresponding to the number of triangles)

and 6 rows (we need two coordinates for each of the three points). Then, we can use

the formulas of the previous section in order to create a histogram in the (θ, ω)-space.

Below there is the corresponding MATLAB code:
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function[bigTheta,Omega,R,cTheta,cOmega,c]= triangleLength(n,nBins)

R=rand(6,n); bigTheta=zeros(1,n); Omega=zeros(1,n);

for i=1:n

j = 1;

v1 = [R(j+2,i)-R(j,i), R(j+3,i)-R(j+1,i)];

v2 = [R(j+4,i)-R(j+2,i),R(j+5,i)-R(j+3,i)];

v3 = [R(j+4,i)-R(j,i), R(j+5,i)-R(j+1,i)];

length1 = sqrt(v1(1)^2 + v1(2)^2);

length2 = sqrt(v2(1)^2 + v2(2)^2);

length3 = sqrt(v3(1)^2 + v3(2)^2);

theta1 = acos(((v1(1)*v3(1))+(v1(2)*v3(2)))/(length1*length3));

theta2 = acos(-((v1(1)*v2(1))+(v1(2)*v2(2)))/(length1*length2));

theta3 = acos(((v2(1)*v3(1))+(v2(2)*v3(2)))/(length2*length3));

A= [theta1, theta2, theta3]; bigTheta(i)=(max(A));

C=[length1,length2,length3]; L=sort(C); Omega(i)=(L(1)/L(2));

end

cTheta = linspace(pi/3,pi,nBins+1); cOmega = linspace(0,1,nBins+1);

dTheta = cTheta(2)-cTheta(1); dOmega = cOmega(2)-cOmega(1);

cTheta = cTheta(1:end-1); cOmega = cOmega(1:end-1);

c = zeros(nBins); v = [bigTheta;Omega];
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for j=1:n

x = bigTheta(j); y = Omega(j);

i = find((cTheta<x)\& (x<cTheta+dTheta));

k = find((cOmega<y)\& (y<cOmega+dOmega));

c(i,k) = c(i,k)+1;

end

end

We can call the above function from the command window by simply typing

[bigTheta,Omega,R,cTheta,cOmega,c] = triangleLength(1e7,128);

and display the result in order to we get this Figure 3.1 which is very similar to one

of the graphs (in Fig.2) of the referenced paper [2].

Figure 3.1: Two-dimensional histogram in (θ, ω)-space obtained from Monte-Carlo
simulations of 107 triangles.
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3.3 Advected Lagrangian triangles

It is fairly simple to add both a random and a deterministic flow to the triangles -

as a simple example we consider the shear flow for the deterministic part of the flow

given by

ẋ = y, ẏ = 0 . (3.1)

For the random part, we use Brownian motion. The MATLAB program needs to be

modified: We need to generate random numbers at each step and, at the same time,

monitor the evolution of the random field in (θ, ω)-space. Moreover, there are two

main differences to the program before:

1. We start with an ensemble of triangles that have their vertices at (0, 0), (1, 0),

and (0, 1) instead of uniformly distributed vertices. In MATLAB, we achieve

this by setting

v = [0,0,1,0,0,1]’; R = repmat(v,[1,n]);

2. We follow the mean of the distribution rather than the distribution itself. This

is done for computational purposes. Moreover, it is simpler to visualize the

movement of the mean in the (θ, ω)-plane.

Below is the MATLAB code for this case:

function [t,bigThetaMean,OmegaMean]= triaPathShear(n,alpha)

v = [0,0,1,0,0,1]’; R = repmat(v,[1,n]);

nSteps = 100; dt = 0.01; t = zeros(1,nSteps+1);

bigThetaMean = zeros(1,nSteps+1); OmegaMean = zeros(1,nSteps+1);
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bigTheta=zeros(1,n); Omega=zeros(1,n);

for k=1:nSteps+1

for i=1:n

v1=[R(3,i)-R(1,i) , R(4,i)-R(2,i)];

v2=[R(5,i)-R(1,i) , R(6,i)-R(2,i)];

v3=[R(5,i)-R(3,i) , R(6,i)-R(4,i)];

length1= sqrt(v1(1)^2 + v1(2)^2);

length2= sqrt(v2(1)^2 + v2(2)^2);

length3= sqrt(v3(1)^2 + v3(2)^2);

theta1= acos(-((v1(1)*v3(1))+(v1(2)*v3(2)))/(length1*length3));

theta2= acos(((v1(1)*v2(1))+(v1(2)*v2(2)))/(length1*length2));

theta3= acos(((v2(1)*v3(1))+(v2(2)*v3(2)))/(length2*length3));

A= [theta1, theta2, theta3]; bigTheta(i)=max(A);

C=[length1,length2,length3]; L=sort(C); Omega(i)=L(1)/L(2);

end

t(k) = (k-1)*dt;

bigThetaMean(k) = mean(bigTheta); OmegaMean(k) = mean(Omega);

R = R + randn(6,n)*sqrt(dt);

Rdot = [R(2,:);0*R(2,:);R(4,:);0*R(4,:);R(6,:);0*R(6,:)];

R = R + alpha*Rdot*dt;

end

end
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By calling the above function from the command window:

[t,bigThetaMean,OmegaMean]= triaPathShear(100,0.5);

plot(bigThetaMean,OmegaMean);

we obtained the following graph for the movement of the mean of the estimated

probability distribution. From the graph, we recognize that the mean is approaching

Figure 3.2: Dynamics of the mean of the distribution for a combination of Brownian
motion and shear flow.

the area of the maximum of the probability distribution obtained from the random

triangles in the first simulation (see Figure 3.1). This confirms as well one of the

results of the paper by Quitry et al. [2].
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3.4 Conclusion

In this work we introduced the concept of stochastic differential equations (SDEs),

showed how to solve particular SDEs using stochastic calculus and discussed the

concept of Monte-Carlo simulations for the numerical solution of SDEs in the context

of Brownian motion and for an application concerning the Lagrangian advection of

triangles following the work of Quitry et al. [2]. Here, we combined Brownian motion

with the shear flow and followed the evolution of the mean in the (θ, ω)-plane. We

did not have time to study other deterministic motions (for example deterministic

dynamics given by the harmonic oscillator through the equation ẋ = y, ẏ = −x, but

our codes are written in a way that this motion (and many others) can implemented

without major effort for further studies.
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