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(Tobias Schäfer) Principal Adviser

I certify that I have read this honors thesis and that, in my opinion, it

is fully adequate in scope and quality as an honors thesis for the degree

of Bachelor of Science in Mathematics.

(Jesenko Vukadinovic)

Approved for the Department of Mathematics.

iii



Contents

1 Introduction: Financial Markets 1

1.1 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Financial Mathematics 3

2.1 The random walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Stochastic Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Ito’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Black-Scholes Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Monte-Carlo Simulations 10

3.1 Pricing an option in Matlab . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Checking the distribution with a bar graph . . . . . . . . . . . . . . . 12

3.3 Comparison with Black-Scholes . . . . . . . . . . . . . . . . . . . . . 13

3.4 Our Model and the Real World . . . . . . . . . . . . . . . . . . . . . 15

4 Foreign Exchange 16

4.1 Black-Scholes Currency Model . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Quantos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iv



5 Monte-Carlo Simulations for Foreign Options 21

5.1 Pricing Foreign Options in Matlab . . . . . . . . . . . . . . . . . . . . 21

5.2 Checking the Distribution with a Bar Graph . . . . . . . . . . . . . . 23

5.3 Checking our results with Black-Scholes . . . . . . . . . . . . . . . . . 24

5.4 Our Quanto Model and the Real World . . . . . . . . . . . . . . . . . 26

Bibliography 27

v



List of Figures

3.1 Example of a Brownian path created using Matlab. . . . . . . . . . . 12

3.2 Distribution of the end values for an ensemble of Brownian paths. . . 13

3.3 Bar graph with end values of 5000 random walks. . . . . . . . . . . . 14

5.1 Single path for the quanto model. . . . . . . . . . . . . . . . . . . . . 22

5.2 An ensemble of 5000 sample paths for the quanto model . . . . . . . 23

5.3 Bar graph showing the distribution of the end values for the quanto

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vi



Chapter 1

Introduction: Financial Markets

Much of which drives the present day global economy is the existence of financial

markets where percent ownership of corporations are traded via stocks. There are

many factors that influence the price of a financial asset and it is often unclear what

exactly drives the changes of a value of a stock at a particular moment in time.

Therefore, it is difficult to determine which stock is worth purchasing. Many financial

institutions have the aim to make a profit based on the stock market without accruing

any of the risk that comes along with ”betting” on stocks or, at least they intend to

keep their risk a a minimum level. One way of achieving is via buying and selling

particular financial instruments, such as derivatives and options. In the following, we

will introduce several examples of such financial contracts.

1.1 Options

An option is a contract that gives the buyer the right, but not the obligation, to buy

or sell an underlying asset at a specific price on or before a certain date. If the option

gives the holder the right to buy, the option is called an call option. If the option

1



CHAPTER 1. INTRODUCTION: FINANCIAL MARKETS 2

gives the right to sell, the option is called a put option. Options also differ concerning

the rule when the right to buy or sell can be exercised: An option that can only be

exercised at maturity is called an European option, if the option can be exercised at

any time (until it matures), the option is called an Americal Option. An option, just

like a stock or bond, is a security. It is also a binding contract with strictly defined

terms and properties.

1.2 Derivatives

A derivative is a more general term for a contract that derives its’ value from the

performance of an underlying entity.This underlying entity can be an asset, index, or

interest rate, and is often called the ”underlying”. Options are examples of deriva-

tives and the ”underlying” is the corresponding stock. Other common examples are

futures and forwards. Later in this work, we will discuss quantos which are deriva-

tives involving stocks on foreign markets. An important task is to price derivatives.

This is commonly done with tools developed in the context of stochastic differential

equations. The next section presents a short introduction to derivative pricing.



Chapter 2

Financial Mathematics

A main objective of financial institutions when selling options or similar financial

instruments is to make a profit regardless of how the stock price changes by taking

a commission and remaining in a risk-neutral position. An important example is the

Black-Scholes model, leading to the Black-Scholes equation describing the risk-free

value of an European call option if the underlying stock is assumed to follow a certain

stochastic process called exponential Brownian motion.

We will follow Martin Baxter’s and Andrew Rennie’s definition of a random walk

and eventually Brownian Motion from their book: Financial Calculus [1]. Let’s

begin by defining a random walk which is a basic example of a discrete stochastic

process:

2.1 The random walk

Denoted as Wn(t) with the following properties:

1. Wn(0) = 0,

3
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2. Layer spacing 1/n,

3. Up and down jumps equal and of size 1/
√
n,

4. A measure P, given by up and down probabilities everywhere equal to 1
2
.

Using the central limit theorem, they show that as n gets large, Wn(1)’s distribution

tends to be normally distributed with mean equal to zero and standard deviation

equal to one. Moreover, they show that the random variable Wn(t) can be written in

terms of simple random variables Xi which take the value 1 or −1 with probability

1/2:

Wn(t) =
√
t

(∑nt
n=1Xi√
nt

)
with the distribution of the ratio tending to N(0,1) and thus Wn(t) tends to normal

N(0,t).

It is important to note that each random walk has the property that its future

movements are independent of what has already occurred. Therefore, again by the

central limit theorem, we see that Wn(s+ t)−Wn(s) tends to the same distribution

of N(0,t) as the original random walk. It is then stated that the distribution of Wn

converges in the large-n limit, and it converges towards Brownian Motion, which is a

continuous stochastic process. Brownian Motion has the following properties:

2.2 Brownian Motion

1. Wt is continuous, and W0 = 0,

2. the value of Wt is distributed, under P, as a normal random variable N(0,t),

3. the increment Ws+t −Ws is distributed as normal N(0,t), under P, and is inde-

pendent of Fs the history of what the process did up to time s.
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It is important to note, that W is continuous everywhere but differentiable nowhere.

With the definition of Brownian Motion, we can define our simple stock model for an

asset Xt as exponential Brownian motion, namely:

Xt = X0 exp(σWt + µt)

with the following properties:

1. We use an exponential funciton due to the fact that stock prices can never go

negative.

2. We add a ”drift” term µ to account for long term growth of inflation at the

very least. In the simplest model, the drift µ is assumed to be constant.

3. We multiply out Brownian Motion term by a factor of σ to scale correctly. The

constant σ is called volatility of the stock.

Now that we have a simple stock model, we can begin to investigate how we can

analyze it.

2.3 Stochastic Calculus

Stock behavior is modeled by Brownian motion and must be treated with different

tools than functions that are differentiable. When differentiating a smooth function,

we write the change in a value over a time interval as

dft = µtdt

with the function µt as the slope or drift.
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In many models, not only in finance but also in other fields like physics, the drift

µt can depend on the current value of the function, and thus it is µ(ft, t), where

µ(x, t) is a known function, then we write dft as an ordinary differential equation,

dft = µ(ft, t)dt

In the stochastic world, we can take a similar approach, but we need to account for

both random and deterministic changes. Consider therefore changes of a stochastic

process Xt that has both a Newtonian term based on dt and a Brownian term, based

on an infinitesimal increment of Brownian motion Wt. For this stochastic process Xt,

we can see that the infinitesimal change of Xt is given by

dXt = σtdWt + µtdt

It should be noted that µt can depend on time t and also be random and depend on

values of Xt up until time t (along with σt, which is known as the volatility of Xt at

time t). Formally, we can represent the stochastic process Xt for t > 0 as a stochastic

integral:

Xt = X0 +

∫ t

0

σsdWs +

∫ t

0

µsds

2.4 Ito’s lemma

Since we are working with stochastic processes, we need to use a slight variation of

calculus, known as Ito calculus.

Ito’s formula

If X is a stochastic process, satisfying dXt = σtdWt + µtdt, and f is a determinis-

tic twice continuously differentiable function, then Yt := f(Xt) is also a stochastic



CHAPTER 2. FINANCIAL MATHEMATICS 7

process and is given by

dYt = (σtf
′(Xt))dWt + (µtf

′(Xt) +
1

2
σ2
t f
′′(Xt))dt

We can consider Ito’s lemma as an expansion of a Taylor series up to the second term.

Essentially, it is the stochastic version of the chain rule:

df =

(
∂f

∂t
+ µt

∂f

∂x
+
σ2
t

2

∂2f

∂x2

)
dt+ σt

∂f

∂x
dWt

and now we can begin the derivation for the Black-Scholes equation.

2.5 Black-Scholes Equation

We can define a simple first model where interest rates are compounded continuously

and the stock follows exponential Brownian motion:

Bt = exp(rt), St = S0 exp(σWt + µt) .

Here, the constant r is the riskless interest rate, σ is the stock volatility and µ is

the stock drift. There are no transaction costs and both instruments are freely and

instantaneously tradable either long or short at the price quoted. This allows us to

build a model that consists of a riskless constant-interest rate cash bond and a stock

following the above exponential Brownian motion with volatility σ.

Since the stock follows an exponential Brownian motion St = exp(σWt + µt), the

logarithm of the stock price, Yt = log(St), follows a simple drifting Brownian motion

Yt = σWt + µt. Thus the SDE for Yt is easy to write down: dYt = σdWt + µdt. But,

of course, Ito makes it possible to write down the SDE for St = exp(Yt) as
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dSt = σStdWt +

(
µ+

1

2
σ2

)
Stdt .

By the Cameron-Martin-Girsanov theorem, there exists a measure Q such that St is

a Q martingale, and, under this new measure, the SDE becomes:

dSt = σStdW̃t

Here, W̃t is an exponential Brownian motion under Q, and by solving the above SDE

we see that we can write the stock process St in terms of this Brownian motion W̃t

as

St = S0 exp

(
σW̃t −

1

2
σ2t

)
f In the case of zero interest rates, the value of a European call option V with strike

price K is given by

V = EQ((ST − k)+)

After accounting for an interest rate r > 0 and evaluating this expectation using the

probability density of Brownian motion, we obtain the Black-Scholes formula for

pricing European call options.

V (s, T ) = sΦ
( log s

k
+ (r + 1

2
σ2)T

σ
√
T

)
− ke−rTΦ

( log s
k

+ (r − 1
2
σ2)T

σ
√
T

)
Here, s is the initial stock price, k the strike price, T the maturity, and σ the volatility

of the stock.

Lets quickly reiterate the basis of our model. The price of the underlying stock

follows a geometric Brownian motion. This is where the Brownian motion Wt models

the random changes. Intuitively, Wt is a process that ”jumps” up and down in a

random way and its expected value over any time interval is 0. Also, its variance
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over time is equal to T, we can think of W as a ”random walk”. Therefore, the

infinitesimal rate of return on the stock has an expected value of µ dt and a variance

of σ2dt .

The payoff of an option V (S, T ) at maturity is known. To find its value at an

earlier time we need to know how V evolves as a function of S and t. By Ito’s lemma

for two variables we have (for the Black-Scholes model) the change of the value of the

portfolio V as

dV =

(
µS

∂V

∂S
+
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt+ σS

∂V

∂S
dW
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Monte-Carlo Simulations

Note: All code in the following section can be assumed to be used with Matlab. We

begin by testing the Black-Scholes formula using Monte-Carlo simulations.

3.1 Pricing an option in Matlab

Input needed: a mean, standard deviation, end time, vector spacings, and how many

random walks you would like to compute - m,s,e,k,p respectively

Code for Monte-Carlo option pricing:

function [t,f,g,h] = Ito(m,s,e,k,p)

t = linspace(0,e,k); % set domain for our function

Wt = zeros(p,k);

f = zeros(p,k);

g = zeros(p,1); % to take end values of f

h = zeros(1,p); % for change to a row vector

10
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dt = t(2) - t(1); % set infinitesimal values for derivative

sdt = sqrt(dt); % needed for Ito’s formula

f(:,1) = [50]; % starting stock price of 50

for i = 2 : k

Wt(:,i) = Wt(:,i-1) + randn(p,1) * sdt; % filling Wt: random values

f(:,i) = 50*(exp(s*Wt(:,i)-0.5*s^2*[t(i)])); % Black-Scholes formula

end

g(:,1) = max(f(:,k) - 55 ,0); % only values greater than strike price

h(1,:) = g(:,1); % use mean(h) to compute value

end

The code creates an ensemble of p Brownian paths using the risk-neutral measure.

Then these paths can be used to construct the corresponding stock paths. We can use

this program to visualize both Brownian motion and a stock following exponential

Brownian motion. Figure 3.1 shows a single path: A single path, however, does not

allow us to check easily whether our algorithm is correct. A good first check is to

look at a large ensemble of paths and the distribution of their values. In particular,

the distribution of the end values should be close to a normal distribution curve. The

following figure 3.2 shows the full ensemble of 5000 paths.

The parameters entered were m = 0, s = 0.3, e = 2, k = 200, p = 5000. At

first glance, the picture confirms our intuition: The majority of the end values are

clustered near the middle, with few walks deviating significantly.
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Figure 3.1: Example of a Brownian path created using Matlab.

3.2 Checking the distribution with a bar graph

We will be comparing our results on a histogram to check our distribution. We cannot

expect it to look perfect as the bucket sizes will affect it. We will be using Matlab’s

hist() command to produce our graph.

As we can see from the figure below, the values closest to our mean were the most

likely to occur, with the likely-hood decreasing as the deviation increases. Now that

we have confidence in our model, lets run a simulation to check the accuracy.

We will run a test with parameters m = 0, s = 0.3, e = 2, k = 800, p = 100000, stock

price equals 100, and strike price equals 102. With these values, our Monte-Carlo

simulation yields as a result for the option price 16.040.
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Figure 3.2: Distribution of the end values for an ensemble of Brownian paths.

3.3 Comparison with Black-Scholes

To check our result, we will code the explicit Black-Scholes formula from above, and

see if we get similar results. Something to notice is that the Black-Scholes model has

an interest rate r that we cannot ignore. Since our first model did not take interest

rates into account, any time this formula is used the interest rate r will be set to zero.
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Figure 3.3: Bar graph with end values of 5000 random walks.

Code for analytical Black-Scholes option pricing:

function price= blackScholes(Stock,Strike, r, s, T)

dt = sqrt(T);

d1 = (log(Stock/Strike)+r*T)/(s*dt)+0.5*s*dt;

d2 = d1-(sigma*dt);

price = Stock*normcdf(d1)-Strike*exp(-r*T)*normcdf(d2)

end

Plugging in Stock = 100, Strike = 102, r = 0.0001, s = 0.3, T = 2 – our result from

the analytical formula above is 15.997. The results are close. We cannot expect them

to be exactly the same since our first model relied so heavily on random numbers - if

we ran our first simulation hundreds of times, we would assume that the value would

average very close to the same value that the Black-Scholes formula gives us.
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3.4 Our Model and the Real World

It’s nice to see that our model coincided with Black-Schaoles so well, but we must

check its applicability in the real world. As we already have noted, our model does not

take interest rates into account, thus we already have a problem translating to reality.

Interest rates, however, can be easily incorporated by an additional exponential term.

We must also note that our simulation was accurate for the formula to price European

call options – we have not attempted to price put options nor American options all

together. While the code for the pricing of a put option can be obtained by a simple

change of the claim, pricing of American options is much more challenging. Option

pricing in the real world also takes into account if the stock pays dividends and all of

this must be accounted for.
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Foreign Exchange

The derivative market for the foreign exchange stems from the varying value of the

US dollar compared with other currencies. We must handle these situations with

a little caution, as these instruments behave differently, leading to some subtleties.

For example, in our stock model, we can see a basic forward price as S0e
rT . This

result can be obtained by simple no-arbitrage argument. When trying to extend this

argument to the foreign exchange, we must keep in mind that there will be cash bonds

in both currencies along with an exchange rate.

4.1 Black-Scholes Currency Model

Before investigating Quantos, lets first look into how Black-Scholes handles the ex-

change. We will define two cash bonds and the exchange rate.

DollarBond Bt = ert

SterlingBond Dt = eut

16
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ExchangeRate Ct = C0 exp(σWt + µt)

here, Wt is Brownian motion, and r , u, σ and µ are constants. Although the first

instrument is tradable, the exchange rate is not. The stochastic process Ct is the

dollar value of a pound and clearly we can’t trade with a foreign currency in our

market. Dt is the price of a tradable, but is priced in pounds and therefore cannot

be traded on our market. However, the product of the two, ST = CtDt is tradable

on our market. An investor in America can hold sterling cash bonds with the dollar

value by multiplying by the exchange rate Ct.

We can now follow a similar process to what we did for the basic Black-Scholes

model. We will need to find a measure Q such that we can make

Zt = C0 exp(σWt + (µ+ u− r)t)

into a martingale under the new measure. By the Cameron-Martin-Girsanov theorem,

we will take

W̃t = Wt + σ−1
(
µ+ u− r +

1

2
σ2

)
t

which allows the substitution to be made and we now have

Zt = C0 exp

(
σt −

1

2
σ2t

)
Ct = C0 exp

(
σt + (r − u− 1

2
σ2)t

)
With this, we will look at an example of a call option of buying a pound at time T

for a future price of k dollars. Similarly to European call options, the payoff at time

T is

X = (CT − k)+
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where CT is log-normally distributed. We can now introduce the Log-normal call

formula with σ̃ = σ
√
T :

E

(
(F exp(σ̃Z − 1

2
σ̃2)− k

)
= FΦ

( log F
k

+ 1
2
σ̃2

σ̃

)
− kΦ

( log F
k
− 1

2
σ̃2

σ̃

)
This is extremely similar to the Black-Scholes formula for European call options, but

the F adds a little difficulty as we must compute EQ(CT ). Now, with our slight

familiarity with how we handle derivatives based on foreign currency, lets look into

quantos.

4.2 Quantos

A quanto is a derivative in which the underlying is based in a different currency than

the contract is written in. Quanto options have both the strike price and underlying

asset denominated in the foreign currency. If it is exercised, the value of the option

is calculated in the foreign currency, which is then converted to our currency at the

fixed exchange rate. To price quantos, we will look to a simple two-factor model.

This model has a drift µ and v, positive volatilities σ1 and σ2, a correlation ρ lying

between -1 and 1, and ρ̃ =
√

1− ρ2.

Quanto model

St = S0 exp(σW1(t) + µt), Ct = C0 exp(ρσ2W1(t) + ρ̃σ2W2(t) + vt)

Like we saw before, there are three tradables: the dollar worth of the sterling bond

CtDt, the dollar worth of the stock CtSt and the dollar cash bond Bt

With discounting the cash bond from the other tradables, we have Yt = B−1t CtDt and
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Zt = B−1t CtSt and their SDEs are:

dYt = Yt(ρσ2dW1(t) + ρ̃σ2dW2(t) + (v +
1

2
σ2
2 + u− r)dt)

dZt = Zt

(
(σ1 + ρσ2)dW1(t) + ρ̃σ2dW2(t) + (µ+ v +

1

2
σ2
1 + ρσ1σ2 +

1

2
σ2
2 − r)dt

)
As always, we need to find a measure to make them martingales. Since they are

correlated, we must choose a vector such that both drift terms disappear at the same

time. This vector is found by inverting the following matrix

(
γ1(t)

γ2(t)

)
=

(
ρσ2 ρ̃σ2

σ1 + ρσ2 ρ̃σ2

)(
v + 1

2
σ2
2 + u− r

µ+ v 1
2
σ2
1 + ρσ1σ2 + 1

2
σ2
2 − r

)
and from this, we see that

γ1 =
µ+ 1

2
σ2
1 + ρσ1σ2 − u
σ1

γ2 =
v + 1

2
σ2
2 + u− r − ρσ2γ1

ρ̃σ2

Finally, we can rewrite the quanto model as

St = S0 exp
(
σ1W̃1(t) + (u− ρσ1σ2 −

1

2
σ2
1)t
)

Ct = C0 exp
(
ρσ2W̃1(t) + ρ̃σ2W̃2(t) + (r − u− 1

2
σ2
2)t
)

Now that the dollar tradables are martingales, we can price up our quanto options.

As we noted before, we need to price the forward contract in order to price the call.

Our first step is to express the stock price at date T as:

ST = exp(−ρσ1σ2T )F exp

(
σ1
√
TZ − 1

2
σ2
1T

)
with F = S0e

uT and Z is a normally distributed random variable under Q
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At T = 0, the forward is equal to:

V0 = e−rTEQ(ST − k) = e−rT
(

exp(−ρσ1σ2T )F − k
)

We have a requirement that this value must be equal to zero, since we cannot have

arbitrage. So we set k = F exp(−ρσ1σ2T ). To calculate this value, we write FQ =

F exp(−ρσ1σ2T ) and

V0 = e−rTΦ

(
log

FQ

k
− 1

2
σ2
1T

σ1
√
T

)
and now we are ready to calculate the option price of e−rTEQ((ST − k)+) as

V0 = e−rT

(
FQΦ

( log
FQ

k
+ 1

2
σ2
1T

σ1
√
T

)
− kΦ

( log
FQ

k
− 1

2
σ2
1T

σ1
√
T

))



Chapter 5

Monte-Carlo Simulations for

Foreign Options

We will follow a similar process as we did before, now for our foreign models.

5.1 Pricing Foreign Options in Matlab

Input needed: Stock price, Strike price, foreign interest rate, domestic interest rate,

sigma 1 and sigma 2, end time, vector spacings, and the number of random walks you

would like to compute - Stock, Strike, u, r, sig1, sig2, e, k, p respectively.

function [t,f,g,h, Wt]=QuantoIto(Stock,Strike,u,r,sig1,sig2,e,k,p)

t = linspace(0,e,k);

Wt = zeros(p,k);

rho = rand(1,1);

f = zeros(p,k);

g = zeros(p,1); % to take end values of f

h = zeros(1,p); % to take the column vector g and change it to a row vector

21
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f(:,1) = [Stock];

for i = 2 : k

Wt(:,i) = Wt(:,i-1) + randn(p,1) * sdt;

f(:,i) = exp(-rho * sig1*sig2*t(i))*(Stock*exp(u*t(i)))

*exp(sig1*sqrt(t(i))*Wt(:,i)-((.5)*sig1^(2)*t(i)));

end

g(:,1) = max(f(:,k)-Strike,0); % take values greater than end price

h(1,:) = g(:,1); % use mean(h) to compute option value.

end

Again, we begin by plotting one random process. The result can be seen in Fig. 5.1.

To evaluate the quanto via a Monte-Carlo simulation, we need to create an ensamble

Figure 5.1: Single path for the quanto model.

of sample paths. Fig. 5.2 shows the plot 5000 paths. We expect the end values to
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follow a normal distribution. For this simulation, we used parameters that lead to

smaller volatility within each process so we expect the walks to stay a little closer to

center. Once again, at first look, everything seems to be modeled the way we want it

Figure 5.2: An ensemble of 5000 sample paths for the quanto model

to be. We will need to verify this with a histogram.

5.2 Checking the Distribution with a Bar Graph

We will be comparing our results on a histogram to check our distribution. We cannot

expect it to look perfect as the bucket sizes will affect it. Yet again, We will be using

Matlab’s hist() command to produce our graph, except we will also be passing a

parameter to signify 50 bins. As we can see from the figure below, the values closest

to our mean were the most likely to occur, with the likely-hood decreasing as the

deviation increases.Since our function has an exponential term in it, it will not drop

below zero (much like the price of a stock), and therefore the values trailing off to the

right is not a fundamental issue with our model.
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Figure 5.3: Bar graph showing the distribution of the end values for the quanto model

5.3 Checking our results with Black-Scholes

To calculate the price of an option, we first will write a small function to calculate

FQ We need

• u = foreign exchange interest rate

• T = time until expiration

• sig1,sig2 = positive volatilities

• Stock = initial stock price
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function Fq = sterlingForward(Stock, u , T, sig1, sig2)

F = Stock * exp(u*T) % basic sterling forward price

if rand(1,1) >.5 % rho is uniformly distributed between (-1,1)

rho = rand(1,1)

else

rho = -rand(1,1)

end

Fq = F *exp(-rho*sig1*sig2*T) % formula for the forward quanto

end

Now that we have FQ we can use this function to find the price of the option:

function optionPrice = quantoOption(Stock, Strike, u, r, T, sig1,sig2)

Fq = sterlingForward(u,r,T,sig1,sig2)

d1 = (log(Fq / Strike)+ (.5)*(sig1^(2)) * T) / (sig1*sqrt(T))

d2 = (log(Fq / Strike)- (.5)*(sig1^(2)) * T) / (sig1*sqrt(T))

optionPrice = exp(-r*T) *((Fq)*normcdf(d1) - Strike * normcdf(d2))

We will use the parameters Stock = 100, Strike = 102, foreign interest rate = 1%,

American Interest Rate = 5%, T = 2 years, sig1 = 20%, sig2 = 20%˙

The result from the average of our Monte-Carlo simulation was $14.908 and using

these parameters with our explicit formula we obtain $14.973 confirming the accuracy
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of our model – of course with the difference coming from our normally distributed

random numbers.

5.4 Our Quanto Model and the Real World

Yet again, because of the level of simplicity with our model, we can not expect to be

able to model actual foreign options at this point. In order to make the next step, we

would need to investigate how to extract the correlation coefficient, handle when the

stocks pay dividends, and then take all the other financial derivatives into account.

In our model, we chose a simple random correlation coefficient to test our pricing

algorithm based on a Monte-Carlo simulation. When we apply our method to the

real world, this correlation coefficient should be obtained from a time series analysis

of the underlying data (the exchange rate and the stock).
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