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1 Introduction

In the subject of algebraic topology, there is the notion of a ”covering space.” A
covering space of a topological space X is a space X̃ with a map p : X̃ → X
with the property that every point of X belongs to an open neighborhood U
such that p−1(U) is the disjoint union of homeomorphic copies of U in X̃.
The typical example of a covering space is the projection of R onto the circle
S1, described by the composition of maps R → R3 → S1 ↪→ R2 given by
t 7→ (cos(2πt), sin(2πt), t) 7→ (cos(2πt), sin(2πt)). Visually, these maps describe
a helix in R3 projecting downwards onto the circle.

The covering space p : R → S1, as illustrated in ”Algebraic Topology” by Allen
Hatcher

In the subject of field theory, one is often concerned with field extensions of a
field F . K is an extension of F if K is a field containing F , and this is denoted
K/F . In particular, one is usually concerned with algebraic extensions of
F , extensions that only add elements that are the roots of polynomials with
coefficients in F . An important type of algebraic extension is the splitting field
of a polynomial f(x) over F , or the minimum extension of F that contains every
root of f(x).
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A natural first project when given a new mathematical object is to classify all
of its instances. Given a space X, one would want to know what covering spaces
of X exist, what criteria must be satisfied for them to exist, and how different
covering spaces are related. While most fields clearly have an infinite amount
of algebraic extensions, similar classification questions can be asked about the
fields that lie between a giving splitting field and its base field. Surprisingly,
these ostensibly unrelated objects obey a very similar structure in their classifi-
cation. This structure is the titular Galois correspondence, which can be briefly
described as a one-to-one but inverse correspondence between the subgroups of
a group of isomorphisms from the object (covering space or splitting field) to
itself and the subobjects (covers, fields) lying between the object and its base
(the covered space X or the extended field F ).

This paper will briefly introduce the point-set topology, algebraic topology,
and field theory needed to motivate and understand the Galois correspondence
as it pertains to covering spaces and to Galois extensions.

2 The Topological Story

A topological space (X, τ) is a pair of sets X and τ ⊆ 2X such that the
elements of τ behave similarly to open intervals on R. Specifically, (X, τ) must
obey

1. X ∈ τ and Ø ∈ τ

2. The union of any elements in τ is an element of τ

3. The finite intersection of any elements in τ is an element of τ

If (X, τ) is a topological space, the elements of τ are referred to as open sets,
and τ itself as a topology. The purpose of a topology is to give structure to a
set. For example, Z and Q have the same cardinality, but the standard topology
given to each is different: Z is treated as a series of isolated points (it has the
”discrete topology” τ = 2Z), whereas Q is considered ”dense” as every open
interval contains infinitely many points. Most of the spaces in this paper have
the topology induced by intersecting the set with open n-balls. For example,
the topology on a figure X lying in 3-space will usually be the intersection of
X with ”open spheres” in 3-space, and any unions or intersections that arise
thereafter. Additionally, by abuse of notation this paper will simply refer to
spaces (X, τ) by X, when the topology is clear.

Two spaces X and Y are considered topologically equivalent, or
homeomorphic, if there is a homeomorphism f : X → Y between them.
A homeomorphism is a bijection with the property that U ⊂ Y is an open set
of Y if and only if f−1(U) is an open set of X. An obvious example of two
homeomorphic spaces are two circles with different (nonzero) radii. The radius
is a geometric property and has no bearing on the broader topological struc-
ture of the circle: a homeomorphism can simply be the appropriate translation
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and dilation in R2, for example. Similarly, the perimeter of a square is also
homeomorphic to a circle.

Less obviously, take a solid square ([0, 1]×[0, 1]) and ”glue” its opposite edges
straight across. That is, consider the point (0, y) to be the same as point (1, y),
and consider the point (x, 0) to be the same as (x, 1). The topology on this set
is the standard topology, with the caveat that an open set can’t contain one of
these ”glued” points on its boundary and must extend past these points slightly
on both sides of the square if needed (This is an example of a quotient space,
of which the precise workings are outside the scope of this paper). This space
is homeomorphic to the torus, or ”donut shape.”

These associations on a square form a torus.

A tool to determine that two spaces are equivalent demands a tool to deter-
mine that they are not. The principal technique is to find a ”topological prop-
erty” that would be preserved by homeomorphism, and show that one space has
it while the other does not. One such property is connectedness. If a space
can be fully covered by two non-overlapping open sets, that space is said to be
disconnected, otherwise it is connected. This should reassure the reader that
a circle is not homeomorphic to two circles. Even if both spaces X and Y are
connected, it might be possible in X but not Y to create a disconected space by
removing a single point. This technique proves that R is not homeomorphic to
S1. Another property familiar to students of analysis is that of compactness.
In Euclidean space, this is the property of being closed and bounded, so the
open interval (0,1) is topologically distinct from the closed interval [0,1].

Much of covering space theory hinges on a stronger topological property, the
fundamental group of the space, π1(X,x0). Given a space X and a basepoint
x0, this is the set of homotopy classes of loops inX that start and end at x0. Two
loops l, k : I → X are said to be homotopic if there is a continuous function

f : I2 → X with f(0, t) = l(t), f(1, t) = k(t), and f(s, 0) = f(s, 1) = x0 for all
s. This corresponds to the idea of a ”continuous deformation” of one loop into
another, and in the context of the fundamental group means that any two loops
that can be deformed into each other are considered to be the same element. It’s
worth mentioning that while the choice of basepoint is an important detail, every
space presented for the rest of this paper will be path-connected, meaning
that any two points can be connected by a continuous path, so any two points
x0, x1 ∈ X satisfy π1(X,x0) ∼= π1(X,x1).
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It is possible that every loop in X can be contracted to the constant path
x0. In that case, X is said to be simply connected (assuming it is also path-

connected). Rn is connected for any choice of n, as is Sn for any n ≥ 2. S1,
however, is not. Without delving into computation, notice that the loop that
travels around the circle once clockwise cannot be deformed into a loop that
does so twice—or clockwise, or not at all—without breaking the loop or leaving
the circle. The fundamental group therefore corresponds exactly to the number
of times the loop winds around the circle, with clockwise winding taken to be
”positive” and counterclockwise taken to be ”negative”. So, π1(S

1, x0) ∼= Z.
The circle provides a good example of the group operation of π1: concatenating
two loops by doing one after the other. Here, traversing the circle five times
clockwise and thrice counterclockwise is the same as traversing the circle twice
clockwise.

More complicated spaces may imply more complicated algebra. The torus
is the Cartesian product of two circles, so it’s not terribly surprising that its
fundamental group is Z ⊕ Z. However, it is interesting that the fundamental
group of this space is commutative: traversing three times around a longitude
and twice around a meridian is the same as traversing twice around the meridian
and three times around the longitude, which is the same still as traversing along
a ”three-two curve” that does both before returning to x0. This is specifically
because of the ”connective tissue” between the meridian and longitude, and is
not true in general.

The pink loop is homotopic to the concatenation of the green and yellow loops.

To contrast, consider S1 ∨ S1, the ”wedge space” of two circles joined at
a point. The fundamental group of this space is not Z ⊕ Z because it is not
commutative: the loop a does not commute with the loop b. The fundamental
group is instead Z ∗ Z, the ”free product” on two generators. This is a group
in which the only algebraic relations are aa−1 = a−1a = e = bb−1 = b−1b, such
that the elements b−2a3b, a2b−1a, and aba−1b−1a2b−1 are all distinct.

The wedge of two circles, S1 ∨ S1. Illustration by Hatcher.
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Let this paper now return to the topic of covering spaces. To reiterate, a
covering space of X is a space X̃ with a map p : X̃ → X with the property

that every point of X belongs to an open neighborhood U such that p−1(U)
is the disjoint union of homeomorphic copies of U in X̃. If a covering space
is simply-connected, it can be further called the universal cover of X. That
R is the universal cover of S1 has already been shown, so now consider the
torus. The universal cover of the torus can be constructed in the following way:
let X̃ = R2, and tile X̃ in unit squares such that the origin is a vertex. The
covering map p : R2 → T 2 is then the map that takes each point of each unit
square to the corresponding point on the square representation of the torus. R2

is simply-connected, so this is the universal cover of the torus.
To begin classifying these covering spaces, one needs a notion of when two

covering spaces are equivalent. A covering space isomorphism between two

covering spaces p : X̃1 → X and q : X̃2 → X is a homeomorphism f : X̃1 → X̃2

satisfying p = qf . That is, f is a homeomorphism that preserves the covering
of X, and thus preserves all information about the covering space. An iso-
morphism X̃ → X̃ is called a deck transformation, and the set of all deck
transformations of X̃ forms a group G(X̃).

One more definition is needed: if x̃ and x̃′ are any two points in X̃ that have
the same image in X, then X̃ is normal if there is a deck transformation of X̃
with x̃ 7→ x̃′.

With these definitions, this paper will now present the most important the-
orems classifying the covering spaces of X (given a few assumptions about X).

Theorem 1. The map p∗ : π1(X̃, x̃0) → π1(X,x0) induced by a covering map
p : X̃ → X is injective, and the image subgroup p∗(π1(X̃, x̃0)) in π1(X,x0)
consists of loops in X that ”lift” to loops in X̃ (whose preimages in X̃ are
loops).

Briefly, this is because of the ”homotopy lifting property” of covering spaces:
the kernel of p∗ consists of loops in X̃ whose image can be deformed to a point in
X, but the homotopy lifting property states that this homotopy can be ”lifted”
to X̃ and thus the original loop must also deform to a point in X̃, so the kernel
is trivial.

The significance of this result is that the fundamental group of a covering
space must be a subgroup of the fundamental group of the space being covered.
This is the first of a few significant results classifying covering spaces, and it
places a restriction on what covering spaces are not possible: for instance, the
circle cannot be a covering space of the real line.

Theorem 2. Suppose X is path-connected, locally path-connected, and semilo-
cally simply-connected. Then for every subgroup H of π1(X,x0), there is a
covering space with p∗(π1(X̃, x̃0)) = H.

First, some vocabulary: locally path-connected spaces are those in which
every point belongs to small open sets that are path-connected, and
semilocally simply-connected spaces are those in which every point belongs

5



to a small open set whose loops can be contracted to a point in the space as a
whole.

More importantly, Theorem 2 establishes what covering spaces are possible
for a nicely-behaved space X: there’s one for every subgroup of π1(X,x0). This
confirms that every X meeting this criteria has a simply-connected covering
space, and more generally implies a staggering amount of possible covering
spaces for spaces with large (in the sense of subgroups) π1. The wedge of two
circles, for instance, admits many covering spaces because of its free fundamental
group (diagrams from Allen Hatcher’s textbook Algebraic Topology on the next
page).

Theorem 3. If X is path-connected, locally path-connected, and semilocally
simply-connected, then there is a bijection between the path-connected cover-
ing spaces of X (up to basepoint-preserving isomorphism) and the subgroups of
π1(X,x0). This bijection is given by p∗(π1(X̃, x̃0)) ↔ (X̃, x̃0). If basepoints are
ignored, then this bijection instead exists between the path-connected covering
spaces of X and the conjugacy classes of these subgroups, and the conjugacy
action amounts to a change of basepoint.

Theorem 4. Suppose X is path-connected and locally path-connected, let p :
(X̃, x̃0) → (X,x0) be a path-connected covering space, and let H be the image
subgroup p∗(π1(X̃, x̃0)). Then

a) This covering space is normal if and only if H is a normal subgroup of
π1(X,x0).

b) G(X̃) ∼= N(H)/H, where N(H) is the normalizer of H in π1(X,x0). If
this is a normal covering space, then G(X̃) ∼= π1(X,x0)/H.

These last two conditions completely characterize the path-connected cover-
ing spaces of X: Given a well-behaved space X, the covering spaces correspond
exactly to the conjugacy classes of the subgroups of π1(X,x0), and fixing the
basepoint creates an even more pleasant correspondence between these covering
spaces and the subgroups themselves. Further, there is an inverse relationship
between the elements of G(X̃) and the elements of π1(X̃, x̃0. That is, a covering
space with a greater fundamental group will have fewer deck transformations,
and vice versa.
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Assorted covering spaces of S1 ∨ S1. Illustrations by Hatcher.
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3 The Algebraic Story

Recall that a field F is a ring with the property that F ∖ {0} is an Abelian
group under multiplication. K is said to be an extension field over F if K is
a field containing F . This is denoted by K/F . A field extension can be thought
of as a vector space over the base field: for example, C is an extension of R, and
the elements of C are linear combinations of 1 and i with coefficients in R. C
is not unique in this regard: one can similarly define the extension Q( 3

√
2)/Q as

the smallest field containing both Q and 3
√
2. The elements of Q( 3

√
2) then take

the form a+ b 3
√
2 + c 3

√
4, where a, b, c ∈ Q.

C is a degree two extension over R, and Q( 3
√
2)/Q is similarly a degree

three extension. More generally, the degree [K : F ] of a field extension is its
dimension as a vector space over the base field. This paper is mostly concerned
with finite extensions, for reasons that will become clear. For finite extensions,
the degree of an extension is multiplicative: If F ⊆ K ⊆ L are fields, then
[L : F ] = [L : K][K : F ], and so [K : F ] divides [L : F ].

If an element α of K is the root of a polynomial with coefficients in F ,
then α is said to be algebraic. If every element of K is algebraic, then K is
an algebraic extension. Q(i) is an algebraic extension, but Q(π) is not, for
example. If α is algebraic, then the minimal polynomial for α over F is the
unique monic irreducible polynomial with coefficients in F that has α as a root.
This polynomial may be denoted mα(x).

Theorem 5. α is algebraic over F if and only if F (α)/F is a finite extension,
and every finite extension is algebraic.

Proof: If α is algebraic, then the degree of the extension is the degree of
mα(x). If F (α)/F is a finite extension, then the elements 1, α, α2, ..., αn is a
collection of n+ 1 elements of a dimension n vector space, so they are linearly
dependent. Therefore, there is a linear combination b0 + b1α + ... + bnα

n = 0,
proving that α is the root of a polynomial in F . Finally, if K/F is a finite
extension and α ∈ K, then [F (α) : F ] ≤ [K : F ], so F (α)/F is a finite extension
and thus α is algebraic. □

The fields this paper are most concerned with are the splitting fields of
polynomials with coefficients in F . The splitting field of a polynomial f(x) ∈
F [x] is the minimum field containing both F and every root of f(x). For ex-
ample, Q(

√
2)/Q is the splitting field of x2 − 2, as it contains both roots of the

polynomial and Q. Q(
√
2,
√
3)/Q is not the splitting field of x2 − 2, because it

has a strict subfield that contains every root of x2 − 2. On the other hand, Q
is not the splitting field of x4 − 1, because it contains some but not all of the
roots of x4 − 1. Any two splitting fields of the same polynomial are isomorphic,
hence the splitting field will be referred to in the singular.

A polynomial is separable if it has no repeated roots, and an extension
K/F is a separable extension if every element of K is the root of a separable
polynomial in F [x]. If F is finite, or has characteristic 0, then F is a perfect
field. Most fields students commonly encounter will be perfect, and it takes
some work to find a field that is not. A counterexample is the field of rational
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functions with coefficients in the finite field F2, F2(p). The significance of this
definition are the following results tying separable and irreducible polynomials:

Theorem 6. Every irreducible polynomial over a perfect field is separable.

Theorem 7. Every finite extension of a separable field is separable.

An isomorphism from a field to itself is an automorphism, and as with
the deck transformations, the automorphisms of a field K form a group Aut(K)
under composition. When K is a field extension, Aut(K/F ) is the subgroup of
automorphisms that fix F , such that σ(x) = x for any x ∈ F . Additionally, these
automorphisms preserve the roots of polynomials: if f(α) = 0, then f(σ(α)) =
0. This restricts the action of these automorphisms to permuting the roots of
polynomials that are elements of K and not F .

Consider the field extension Q(
√
2)/Q. Aut(Q(

√
2)/Q) contains only the

identity map and the map
√
2 7→ −

√
2. The extension Q(

√
2,
√
3)/Q additionally

contains the map
√
3 7→ −

√
3, and the map that negates both square roots. It’s

also possible to have a nontrivial extension with a trivial Aut(K/F ): Q( 3
√
2) is

a degree 3 extension over Q, but 3
√
2 is the only root of x3−2 in the field, so any

automorphism of Q( 3
√
2)/Q must fix both 3

√
2 and all of Q, and thus is constant.

To avoid this issue, one needs to consider fields that have ”enough” auto-
morphisms to be interesting. To this end, define a Galois extension to be an
extension K/F with the property |Aut(K/F )| = [K : F ]. If K/F is a Galois
extension, then denote Aut(K/F ) as the Galois group Gal(K/F ). The ear-
lier comment about automorphisms permuting the roots of polynomials might
suggest that Galois extensions are connected to splitting fields. In fact, this
connection is very strong:

Theorem 8. K/F is Galois if and only if K is the splitting field of a separable
polynomial over F . If this is the case, then K/F is a separable extension.

By definition, every automorphism in Aut(K/F ) fixes F . However, notice
in the earlier examples that these automorphisms can fix larger subfields of
K as well. The constant map obviously fixes K/F in its entirety, but the
map

√
2 7→ −

√
2 fixes Q(

√
3) ⊆ Q(

√
2,
√
3) as well. Define the fixed field

of a subgroup H ⊆ Aut(K/F ) to be the subfield of K that is fixed by all
automorphisms in H. In this case, Q(

√
3) is the fixed field of the subgroup

{1,
√
2 7→ −

√
2}

If K/F is a Galois extension, then there is a one-to-one correspondence
between the subfields E with F ⊆ E ⊆ K and the subgroups of the Galois group
Gal(K/F ), given by the association of each subgroup with its fixed field. As
with the deck transformations of a covering space, this is an inverse relationship:
larger subfields are associated with smaller subgroups. The finiteness of the
typical examples in Galois theory actually reveals an even stronger result in this
case: if H fixes E, then the degree of K/E is exactly |H|, so the diagrams one
draws of the field extensions between K and F are precisely the diagrams one
draws of the subgroups of Gal(K/F ), even if one numbers the edges to denote
the degrees of extension. Further, K/E is always Galois with Gal(K/E) = H, E
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is Galois over F if and only if H is normal in Gal(K/F ) (recall the similar result
from the covering space material), and if H is normal then Gal(E/F ) ∼= G/H.

Hasse diagram of the subgroups of Gal(Q(
√
2,
√
3)/Q) and subfields of

Q(
√
2,
√
3)/Q. Illustration by David S. Dummit and Richard M. Foote in their

textbook ”Abstract Algebra”

4 The Galois correspondence

All of these results are analogous to covering space theory, despite the ostensible
lack in overlap between the very geometric topic of coverings and the focus on
solving polynomials found in Galois/field theory. The most apparent difference
between the two theories lies, if anything, in the typical examples used in the two
subjects. The simplest examples in algebraic topology are composed of circles,
planes, lines, and their quotients: with the exception of some quotient spaces
like the projective plane, these mostly have either trivial or infinite fundamental
groups. Conversely, the simplest examples in field theory are splitting fields of
Q, the degree of which are finite. So, this section will construct both a field
extension with Galois group Z/6Z and a topological space with fundamental
group Z/6Z, to make concrete the analogy.

Finding a field extension is very straightforward: when p is a prime number,
Q(ζp)/Q is a Galois extension with Galois group Z/(p − 1)Z, where ζp is any
pth root of unity (a solution to xp − 1 other than 1). So, consider the extension
Q(ζ7)/Q. Obviously, the constant subgroup corresponds to the full extension
Q(ζ7)/Q, and the full Galois group corresponds to Q. Z/3Z corresponds to some
degree 2 extension of Q given by Q(ζ7 + ζ27 + ζ47 ). This is simple enough to
compute: letting α = ζ7 + ζ27 + ζ47 , note that 1 + α+ ...+ α6 = 0. Then,

α2 = ζ7 + ζ27 + ζ47 + 2ζ37 + 2ζ57 + 2ζ67 ,

α2 + α+ 2 = 2(1 + ζ7 + ζ27 + ...+ ζ67 ),

α2 + α+ 2 = 0,

=⇒ α = −(1/2)± i
√
7/2 (Quadratic Formula)

So the extension Q(ζ7+ζ27+ζ47 )/Q ∼= Q(i
√
7)/Q. The subgroup Z/2Z corresponds

to some cubic extension given by Q(ζ7 + ζ67 ), which is substantially trickier to
compute.
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For a corresponding topological space, consider the lens space L(r; q). The
lens space is defined by ”gluing” two r-faced solid pyramids (not including the
base) at their base, and then further gluing each face of the top pyramid to
the face on the bottom pyramid q faces to the right. r and q must be coprime,
but this issue can be handwaved by picking q = 1. The lens space L(r; q) has
fundamental group Z/rZ, so pick r = 6.

It’s also worth noting that the covering space has an equivalent construction
created by applying a quotient map (”gluing”) to the four-dimensional hyper-
sphere S3. The exact details of this map are hard to visualize, but the fact that
such a construction exists helps explain the coverings of the lens space.

So, the chosen space is the lens space L(6; 1). The covering space with
G(X̃) = 0 is L(6; 1), and the covering space with G(X̃) = Z/2Z is L(3; 1).
The simply-connected covering space is S3. Intuitively, these covering spaces
represent ”ungluings” of the lens space: in the case of S3, the quotient map
is totally undone, and so every point in the lens space is covered by the six
points on S3 that were glued to form it. The challenging cover to understand
is that with G(X̃) = Z/3Z. This is not L(2; 1), because there is no pyramid
with just two faces and so this lens space does not exist. However, this paper
conjectures that this covering space is RP 3, the space obtained by attaching
antipodal points of S3 to each other. This is difficult to visualize even in the
three-dimensional case of attaching antipodal points on a conventional sphere,
but nevertheless RP 3 has the correct fundamental group and is a quotient of
the same space as L(6; 1).

Top and side view of L(6; 1). Same-colored faces are considered the same face.
Generated on https: // vinequai. com/ lensspace

An example of a ”5-loop” in L(6; 1). If one more segment is added, all six
segments of the loop can be homotopically moved to the peak of the pyramid,

and then the loop can be deformed to a point. Hence, the fundamental group is
Z/6Z. Generated on https: // vinequai. com/ lensspace
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