### **MTH229**

## More on Graphing with MATLAB

Project 3– Exercises

| NAME:       |  |
|-------------|--|
| SECTION:    |  |
| INSTRUCTOR: |  |

#### Exercise 1:

To illustrate, type in the following commands, which plot the function  $f(x) = \sin(x^2)$  over the interval  $[0, \pi]$ .

| >> | <pre>x = linspace(0, pi);</pre> |   |      |      |       |      |     |
|----|---------------------------------|---|------|------|-------|------|-----|
| >> | $y = sin(x.^{2});$              |   |      |      |       |      |     |
| >> | <pre>plot(x,y); grid</pre>      |   |      |      |       |      |     |
| >> | zoom on                         | % | just | zoom | works | here | too |

Now clicking in the figure window will cause the graph to be redrawn over a smaller domain.

- a. Click near the smallest positive x in this interval where f(x)=0. (The positive x-value where the graph first crosses the x axis). What is the length of the interval shown on the y axis?
  (1) Answer:
- b. Click twice more near this point of first intersection. Estimate (no more than two decimal points) from the zoomed in graph the numeric value of the x for which f(x) = 0. (2) Answer:

#### Exercise 2:

Replot the ball problem until you can find a good estimate for the value of b so that  $y(t) \ge 0$ 

on the interval [0, b], and is negative for t > b. What is the value of b that you found? (4) Answer: \_\_\_\_\_

### Exercise 3:

Find the suggested values by plotting the graphs until you can figure out the answer.

a. Repeating the above example, find one period of the function

 $f(x) = 120\sin(120\pi x).$ 

(This is a bit tricky! Keep plotting until you clearly get one period shown in the viewing window.) (5) Answer:

- When does  $f(x) = 25 x \sin(x)$  cross the x-axis? (Guess an answer to within 1) b. decimal point.) (6) Answer: \_\_\_\_\_

### Exercise 4:

From its graph, estimate the minimum value of the function

$$f(x) = \frac{5}{\cos(x)} + \frac{8}{\sin(x)}$$

over the interval  $(0, \pi/2)$ .

Just plotting with x values given by

### >> x = linspace(0,pi/2)

will cause the same problems as above. Make a plot, judiciously avoiding the vertical asymptotes, and then find the minimum value (y value) of the function on this interval.

(7) Answer: \_\_\_\_\_

### Exercise 5:

Although it isn't an asymptote, this next problem has the same problem with the default y-axis scale being too big to accurately see other features of the graph.

Let

 $f(x) = x^5 - 225x^3 - x^2 + 225.$ 

Our goal is to find the three real roots (zeroes) of this polynomial.

- b. Is 0 the other root? From the graph over -17, 17 it seems plausible. Explain why you know that 0 is not the other real root for this polynomial.
  (9) Answer:

c. Replot the function over an appropriate domain to find the third real root: (10) Answer: \_\_\_\_\_\_

# Exercise 6:

Consider the functions of the previous example,  $y_1 = 4\cos(x)$  and  $y_2 = \cos(4x)$ , make the graphs and use them to answer the following:

- a. Which function is oscillating more rapidly? (11) Circle one: 1.  $\cos(4x)$  2.  $4\cos(x)$
- b. Which function has the larger amplitude? (12) Circle one:  $1. \cos(4x) 2.4 \cos(x)$

# Exercise 7:

Let  $f(x) = \sqrt{x}$ . Plot f(x) and g(x) = f(x) - 5 together over the interval [0, 10]. The graph of g(x) is the graph of f(x) shifted ...

(13) Circle one: 1. left by 5 2. down by 5 3. right by 5 4. up by 5

Exercise 8:

We wish to graph a function and its tangent line. Graph both the function  $y = \sqrt{x}$  over the interval [0,9] and the line through the point (4,2) with slope 1/4.

(14) Attach your graph to the worksheet.

### Exercise 9:

Plot a graph that describes the following calling plan: You pay \$35 for the first 1,000 minutes. After the first 1,000 minutes you pay \$0.30 per minute. Draw a graph for usage between 0 and 2,000 minutes.

- a. What commands did you use? (15)
- b. (16) Attach your graph to the worksheet.

# Exercise 10:

Suppose your salary was \$42,200 in 2003 and \$47,500 in 2005. You are interested in your salary in the year 2011, but of course you would like to know this **now**. What do you do? Well, you can try a mathematical model. There are two common ones:

Linear model This model says your salary will go up by a fixed amount each year (the slope). The formula is of the form

$$s = s_{2003} + m(t - 2003),$$

where t is the year and  $s_{2003}$  is the amount you make in the year 2003 which is \$42,200.

**Exponential model** This model assumes your salary increases by a fixed **percentage** each year (not *amount* as in the linear model). The general formula is of the form

$$s = s_{2003}e^{r(t-2003)}$$

where r is figured out from the data. We'll help you out. For this problem r is

$$r = \frac{\ln(47500/42200)}{2} = 0.0592\dots$$

Assume for now that your salary follows a "linear growth" pattern.

a. What MATLAB command calculates the salary values, s as a function of t?
(17) Answer:

- b. Assuming linear growth continues through the year 2011, make a graph to display your salary from year 2003 to 2011. After the plot command, label the axes so that the x axis says "year", the y says "yearly salary," and the title says "My salary."
- c. Use the graph to predict your salary in 2011.
  (18) Answer: \_\_\_\_\_\_

### Exercise 11:

- a. On your graph, label the exponential model with "exponential" and an arrow, and the linear model with "linear" using the icons in the figure window menubar.
- b. Use the exponential model to estimate your salary in the year 2011.
  (19) Answer: \_\_\_\_\_\_
- c. The difference between the linear model and exponential model is how they predict the the amount your raise will be each year. One predicts that your salary will increase by a fixed *amount* each year. The other that your salary will increase by a fixed **percent** each year.

Which model predicts that your raise will be a fixed percent each year? (21) Circle one: 1. linear model 2. exponential model

d. What is the fixed percent each year that is predicted?(22) Answer: \_\_\_\_\_

## Exercise 12:

On the same graph, mark the two points (2003, 42200) and (2005, 47500) using diamonds (the 'd' argument to plot).

### Exercise 13:

On the same graph. Draw the line s = 60,000. Your graph should have 3 functions on it now: the linear model, the exponential model and the flat line s = 60,000.

- a. In what year does the linear model predict that your salary will be at least \$60,000?
  (23) Answer: \_\_\_\_\_\_
- b. In what year does the exponential model predict that your salary will be at least \$60,000?
  (24) Answer: \_\_\_\_\_
- c. Attach your graph (all 3 functions and annotations).
  (25) Attach your graph to the worksheet.

### Exercise 14: (Optional:for extra credit)

The radius r of the smallest circular paper plate that holds a pizza of a given radius R=5 inches and central angle  $\theta$ ,  $0 < \theta \leq \pi$ , is given by the function  $r = f(\theta)$  where

$$r = f(\theta) = \frac{R}{2\cos\frac{\theta}{2}} \quad \text{if } 0 < \theta \le \frac{\pi}{2}$$
$$r = f(\theta) = R\sin\frac{\theta}{2} \quad \text{if } \frac{\pi}{2} < \theta \le \pi.$$

Following sketches to be done by hand:

- a. Sketch the pizza in its plate for  $\theta = \pi/6$  (a 30 degree wedge). Find r for  $\theta = \pi/6$ .
- b. Sketch the pizza in its plate for  $\theta = \pi$  (half the pizza). Find r for  $\theta = \pi$ .
- c. Determine the function  $f(\theta)$  for the domain  $\pi \leq \theta \leq 2\pi$ .
- d. Explain how to obtain the formula above for the function  $f(\theta)$  on  $(0, \pi)$ . Hint: Sketch lots of examples.
- e. Use MATLAB to create and print a graph of  $f(\theta)$ . (printed graph to be submitted separately to professor.)



A wedge of pizza. (Yum!)