MTH229

Graphical Solutions to Equations

Project 4– Exercises

NAME:	
SECTION:	
INSTRUCTOR:	

Exercise 1:

Use a graph of $(x-2)^2 = 4\sin(x)$ to find solutions to the equation valid to 2 decimal points: (1) Answer:

Exercise 2:

Use the zooming technique to find solutions of

 $50 + \sin x = 2x.$

which are valid to at least two decimal places.

Hint: Try to estimate the value of $50 + \sin x$. This will give you an idea in which x interval are the possible solutions!

(2) Answer: _____

Exercise 3:

Folklore is that exponential functions grow faster than polynomial functions. Although true, you need to be careful about how you interpret this statement, as this exercise shows.

Consider the functions $z_1 = e^x$ and $z_2 = x^4$. Plot them together on the interval [0,4].

a. From their graphs, how can you determine which graph is the exponential and which is the polynomial?

(3) Circle one:

- **1.** polynomial functions grow faster than exponential functions
- 2. Exponential functions grow faster than polynomial functions
- **3.** For different values of x, I can evaluate z_1 , z_2 and determine which is larger.

b. Find the value of x (to two decimal places) for the point of intersection by zooming on the zero of f(x) = e^x - x⁴. (or by zooming on the intersection point of the functions z₁ = e^x, z₂ = x⁴.)
(4) Answer: _______

On this graph, x^4 is larger than e^x from the intersection point to x = 4. Experiment to determine how large a value of x is needed for the exponential to catch up to x^4 . Then find the second intersection point. (correct to three decimal places.) This one is larger than 4. In fact, you now have found two intersection points (x_1, y_1) , (x_2, y_2) . (where $x_1 < x_2$) Up to x_1 the function e^x is bigger, from x_1 to x_2 the function x^4 is the bigger. What happens after x_2 ?

- c. What is the *x*-coordinate of the second intersection point?
 (5) Answer: ______
- d. What happens to the behavior of z₁ and z₂ after the second intersection point?
 (6) Circle one:
 - **1.** e^x grows faster
 - **2.** x^4 grows faster
 - **3.** they grow at the same rate
 - **4.** e^x grows faster, but for increasingly large values of x, x^4 catches up to e^x again.

Exercise 4:

- a. Find the x-coordinate for where $f(x) = (x+2)/x^2$ achieves its minimum value. (7) Answer: ______
- b. What interval on the x-axis did you use to make you plot window?

(8) Answer:

Exercise 5:

- a. Let f(x) = x³ 7x² + 2x + 9. Solve the cubic equation f(x) = 0. Find all of its roots correctly up to 4 significant digits.
 (9) Circle one:

 6.6, 1.1 -0.7
 6.4766, 1.4692, -0.9458
 6.7053, 1.3259, -0.8259
 0.0010, 1.0100, 7.5902
 6.5806, 1.1062, -0.6868
- b. Now find all solutions to $x^3 + 2x + 4 = 0$ (Note that the coefficient of x^2 is now 0). (10) Circle one: 1. 0.6641, -0.6640, -1.3283 2. 1.8230, -1.8230, -1.3283 3. 0.5898 \pm 1.7445*i* -1.1795 4. 1.8230 \pm 0.6641*i*, -1.3283

Exercise 6:

a. Let $\theta = \pi/4$. Look carefully at f(x), it is a quadratic polynomial in x. Rewrite f(x) so that the coefficients appear as (careful with the scientific notation)

 $f(x) = ax^2 + bx + c.$

Now represent this polynomial in MATLAB, as in [a b c]. What are the values:

(11) Answer:

b. Use your previous answer and the **roots** function to find the range ([0, b]) of an arrow when shot at an angle of $\pi/4$. Specify the range in terms of its endpoint b.

(12) Answer: _____

Exercise 7:

- a. Plot various graphs of the g(x) until you find the range of g, [0, b]. Enter the value of b with at least 1 digit to the right of the decimal point. (Remember, arrows don't bounce up this mathematical model is only valid until the arrow first hits the ground.)
 (13) Answer: _______
- b. Now make a plot containing the trajectories of both models. Label the individual plots.
 (14) Attach your graph to the worksheet.
- c. From your graph estimate the maximum height of the arrow if there is no wind resistance.
 (15) Answer: ______
- d. From your graph estimate the maximum height of the arrow if there is wind resistance.
 (16) Answer: ______