"Applications of Definite Integration Using the Symbolic Math Toolbox"

MTH232

Applications of Definite Integration Using the Symbolic Math Toolbox

Project 2– Exercises

NAME:	
SECTION:	
INSTRUCTOR:	

Exercise 1:

Find all the zeros of $f(x) = 4 * x^3 - x^2 - 4 * x + 1$ (1) Answer:

Exercise 2:

Use MATLAB to find the critical numbers, absolute extrema, graph with key points labeled for $f(x) = x^2 e^{x/3}$ on interval [-8,2]. Submit the completed graph.

- a.) The critical numbers are: (2) Answer: _____
- b.) *Absolute* max:

(3) Circle one: 1. the point (0,0)
2. the point (-6, 36e⁻²)
3. the point (2, 4e^{2/3})
4. none of the above

- c.) Absolute min:
 - (4) Circle one: 1. the point (0,0)
 2. the point (-6, 36e⁻²)
 3. the point (2, 4e^{2/3})
 4. none of the above

d.) Submit the graph.

(5) Attach your graph to the worksheet.

Exercise 3:
Given, $f(x) = x^4 + 4x^3 + 4x^2 + 4$.
Use MATLAB to find:
 a.) zeros (6) Circle one: 1. where x=0 2. where x=1 3. there are no zeros 4. none of the above
b) critical numbers
(7) Answer:
 c.) Relative max using the Second Derivative Test. (Note that fpp can be found by using either diff(fp) or diff(f,2). The 2 in diff(f,2) means differentiate twice). x=
(8) Answer:
d.) Relative min(s)? $x =$
(9) Answer:
e.) Find $f''(x_{r.max}) =$
(10) Answer:
I.) Find $f''(x_{r.min}) =$
(11) Answer:
α) Submit the graph labeled with min and max (use "text" command)

g.) Submit the graph labeled with min and max. (use "text" command.)(12) Attach your graph to the worksheet.

Exercise 4:

Use MATLAB to graph, find and label points of intersection and determine the area between $f(x) = x^2 + x + 8$ and g(x) = x + 12.

a.) Points of intersection (x coordinates):

```
x=
(13) Answer: _____
```

b.) the area is:

(14) Answer: _____

- c.) Submit the graph
 - (15) Attach your graph to the worksheet.

Exercise 5:

- (a) Graph the region bounded by $y = \sqrt{x+5}$, x axis, x = 1 and x = 5Submit the Graph:
 - (16) Attach your graph to the worksheet.
- (b) Find the volume when the region is rotated around the x-axis. (17) Circle one: 1. 16π 2. 32π 3. 14π 4. 18π

Exercise 6:

The region bounded by $y = x^3$ and $y = 2x^2$ is rotated around the y-axis.

- (a) graph the region. Note: do not plot the functions outside of the intersection points!(18) Attach your graph to the worksheet.
- (b) find the volume
 - (19) Circle one: 1. 16π 2. $8\pi/5$ 3. $8\pi/3$ 4. $16\pi/5$