MTH232

Introduction to the Symbolic Math Toolbox

Project 1– Exercises

NAME:	
SECTION:	
INSTRUCTOR:	

Exercise 1:

Find the zeros of $f(x) = x^3 - x^2 - 18$ symbolically.

First, what MATLAB command defines x to be a symbolic variable?
 (1) Answer:

What command defines f(x) symbolically?
(2) Answer:

What command symbolically determines the zeros of f(x)?
(3) Answer:

- How many real roots are there?
 (4) Circle one: 1.12.23.34.4
- What are the zero(s) of f(x)?
 (5) Circle one: 1. 3 and -1 ± √5
 2. -1 ± √5
 3. 3
 4. 2 ±√2
- What command verifies your results, that is, evaluates f(a) where a is one of the roots?
 (6) Answer:

Exercise 2:

The linear approximation, $P_1(x)$, of a function f(x) is defined as

$$P_1(x) = f(a) + f'(a)(x - a)$$

Further, the quadratic approximation is defined as

$$P_2(x) = f(a) + f'(a)(x-a) + 1/2 f''(a)(x-a)^2$$

Use symbolic math to find $P_1(x)$ and $P_2(x)$ if $f(x) = \arcsin x$ and a = 1/2 (note: $\arcsin x$ in MATLAB is asin(x))

For the following: use fractions, not decimal notation, for constants.

- Assume syms x has been entered.
- What MATLAB command defines f(x) = arcsin x symbolically?
 (7) Answer:

What MATLAB command finds f'(x), and assigns it to a variable called fp?
 (8) Answer:

What command evaluates f(1/2) symbolically, and assigns it to a variable named f1?
 (9) Answer:

- What command evaluates f'(1/2) symbolically, and assigns it to a variable named fp1? (10) Circle one: 1. fp1=simplify(fp,x,'1/2')
 2. fp1=solve(fp,x,'1/2')
 3. fp1=subs(fp,x,'1/2')
 4. subs(fp,x,'1/2')
- With all the above commands typed in ,what command would you now use to define P₁(x) in MATLAB, call it p1?
 (11) Circle one: 1. p1=fp1*(x-1/2)
 2. p1=f1+fp1(x-1/2)
 3. p1=f1+fp1*x-1/2
 4. p1=f1+fp1*(x-1/2)

- P₁(x), when simplified, is equal to...
 (12) Circle one: 1. 1/6 π + √3 (2/3 x 1/3)
 2. π + √2 (2/3 x 1/3)
 3. 1/6 π + √2 (2/3 x 1/3)
 4. √3 (2/3 x 1/3)
- What command defines fpp as the second derivative of f(x)? (Hint: take the derivative of fp)
 (13) Answer:

- What command evaluates f''(1/2) symbolically, and assigns it to a variable named fpp1?
 - (14) Circle one: 1. fpp1=simplify(fpp,x,'1/2')
 - 2. fpp1=solve(fpp,x,'1/2')
 3. fpp1=subs(fpp,x,'1/2')
 - **3.** IppI=Subs(Ipp, x, 1/2)
 - 4. subs(fpp,x,'1/2')
- What command would you use to define P₂(x) in MATLAB, call it p2? (15) Circle one: 1. p2=f1+fp1*(x-1/2)
 2. p2=f1+fp1*(x-1/2)+1/2*fpp1*(x-1/2)^2
 3. p2=f1+fp1*(x-1/2)^2+1/2*fpp1*(x-1/2)
 4. p2=1/2*fpp1*(x-1/2)^2
- P₂(x), when simplified, is equal to....
 (16) Circle one: 1. 1/6 π − 5/18 √3 + 2/9 √3x²
 2. 1/6 π + 4/9 √3x − 5/18 √3 + 2/9 √3x²
 3. 1/6 π + 4/9 √3x + 2/9 √3x²
 4. 2/9 √3x² − 5/18 √3