MTH233

3-Dimensional Graphs – Vector Valued Functions

Project 2– Exercises

NAME:	
SECTION:	
INSTRUCTOR:	

Exercise 1:

Make a graph of the vector valued function:

$$r(t) = \cos^2(2t)\vec{i} + \sin^2(3t)\vec{j} + \cos(2t - \pi/2)\vec{k}$$

- a.) What are the MATLAB commands you used to generate the graph?
 - (1) Answer:

b.) What is the period of this parametric equation?

(Hint: Use comet 3 and different domains for t.)

- (2) Circle one:
- 1. The function has no period
- **2.** the period is π
- **3.** the period is 2π
- **4.** the period is 4π
- c.) Submit your graph.
 - (3) Attach your graph to the worksheet.

Exercise 2:

The approach to the Lincoln Tunnel in New York City from New Jersey resembles a helix. A possible model for this road is given by the parametric equations $r(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$ where

$$x(t) = (1 - t)\cos 4\pi t$$
$$y(t) = (1 - t)\sin 4\pi t$$
$$z(t) = 1 - t$$
$$and \ 0 \le t \le 1$$

- a.) Compute the velocity vector v(t) and the acceleration vector a(t). Then generate these vectors using 500 points for t. (You can find v and a symbolically using diff, being careful not to reassign any variables.)
 - v(t) is
 - (4) Circle one:

1.
$$\left(-\sin{(4\pi t)} + 4\pi(1-t)\cos{(4\pi t)}\right)i + \left(-\cos{(4\pi t)} - 4\pi(1-t)\sin{(4\pi t)}\right)j - k$$

2. $\left(-\cos{(4\pi t)} - 4\pi(1-t)\sin{(4\pi t)}\right)i + \left(4\pi(1-t)\cos{(4\pi t)} - \sin{(4\pi t)}\right)j - k$
3. $\left(-\cos{(4\pi t)} + 4\pi(1-t)\sin{(4\pi t)}\right)i + \left(-\cos{(4\pi t)} - 4\pi(1-t)\sin{(4\pi t)}\right)j - k$
4. none of the above

- 4. Holic of the abo
- a(t) is
 - (5) Circle one:

1.
$$(8\pi \sin(4\pi t) - 16\pi^2(1-t)\cos(4\pi t))i + (-8\pi \cos(4\pi t) - 16\pi^2(1-t)\sin(4\pi t))j$$

2. $(8\pi \cos(4\pi t) + 16\pi^2(1-t)\cos(4\pi t))i - (8\pi \sin(4\pi t) - 16\pi(1-t)\cos(4\pi t))j$
3. $(-8\pi \cos(4\pi t) - 4\pi(1-t)\cos(4\pi t))i + (8\pi \sin(4\pi t) - 4\pi(1-t)\sin(4\pi t))j$
4. none of the above

- b.) Generate the graph for r(t). Plot the velocity and acceleration vectors when t=1/2 on this graph. Label the velocity and acceleration vectors. Submit the graph of r(t) with the indicated velocity and acceleration vectors.
 - (6) Attach your graph to the worksheet.

Exercise 3:

Create a movie for $r(t) = \sqrt{4 - t^2} \cos(2\pi t) \vec{i} + \sqrt{4 - t^2} \sin(2\pi t) \vec{j} + t\vec{k}$ Be careful, what is the domain of this function?

Try values N=100, AZ=45, EL=20, VEL=0.1, ACC=0.01 for csimovie parameters.

- a.) Based on the movie, is r'(t) perpendicular to r(t)?
 - (7) Circle one:
 - 1. yes 2. no
- b.) Does $r'(t) \bullet r(t) = 0$?
 - (8) Circle one:
 - 1. yes 2. no
- c.) Based on the movie, is the speed constant?
 - (9) Circle one:
 - 1. yes 2. no
- d.) Compute ||r'(t)||. Does ||r'(t)|| = a constant?
 - (10) Circle one:
 - 1. yes 2. no
- e.) $||r(t)||^2 =$
 - (11) Circle one:

1. 2 2.
$$8-t^2$$
 3. $(4-t^2)(\cos(2\pi t)+\sin(2\pi t))+t^2$ 4. 4 5. none of the above

- f.) r(t) lies on the surface of
 - (12) Circle one:
 - 1. a cone
 - 2. sphere of radius 2
 - 3. paraboloid
 - 4. sphere of radius 4
 - 5. none of the above